LEPTIN REGULATES BONE FORMATION VIA THE SYMPATHETIC NERVOUS SYSTEM

Florent Elefteriou1, Shu Takeda1, Regis Levasseur1, Xiuyun Liu1, Liping Zhao3, Keith L. Parker3, Dawna Armstrong2, Patricia Ducy1,2,4 and Gerard Karsenty1,2

1Department of Molecular and Human Genetics, 2Bone Disease Program of Texas 3Department of Pathology, 4Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; 4Department of Internal Medicine, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas TX 75390;

We previously showed that leptin inhibits bone formation by an undefined mechanism. Here we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. β-adrenergic receptors on osteoblasts regulate their proliferation, and a β-adrenergic agonist decreases bone mass in leptin-deficient and wildtype mice while a β-adrenergic antagonist increases bone mass in wildtype and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.