Brain Functional Imaging with Hyperpolarized 129Xe MRI
We demonstrate the first use of HP 129Xe MRI for functional brain imaging of a stimulus evoked pain response in the cerebral cortex of the rat. Our results show that the anatomical specificity of HP 129Xe functional MRI is comparable to conventional functional MRI (fMRI) methods; the percent increase in HP 129Xe signal over baseline ($90-140\%$) is much greater than that obtained for conventional BOLD fMRI (2 to 8%), and functional activity can be determined from a single set of images, demonstrating that single-shot fMRI is possible with this method.

Validation of Hyperpolarized 129Xe T$_1$ in the Rat Brain
Although T$_1$ values have been reported for human, rat and mouse brain, the values are not consistent for any species and range from 3.6 to 26 seconds in the rat brain. In this study, we reconciled discrepant measures of T$_1$ for HP 129Xe in the rat brain by using two methods which have been corrected for errors introduced by low SNR measurements. The HP 129Xe T$_1$ in the rat brain was determined to be 15.3 ± 1.2 and 16.2 ± 0.9 sec respectively, which are highly consistent (0.9 sec difference), and offer a resolution to the discrepancy.

Imaging Stroke with Hyperpolarized 129Xe MRI
We show that HP 129Xe MRI is able to detect with anatomical specificity an area of decreased cerebral blood flow (CBF) induced by middle cerebral artery occlusion (MCAO). These results were compared with a method of determining the areas of critically ischemic tissue, namely, proton ADC mapping. The results demonstrate the feasibility of detecting stroke using HP 129Xe MRI and suggest that HP 129Xe MRI may serve as a complementary tool to proton MRI for studying the structure and function of the brain.