INTRODUCTION

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to past space activity. The disadvantage was that slow computational procedures relegated shield evaluation near the end of the design process followed by off-optimum solutions to shielding issues. We have been investigating high-speed computational procedures to allow shield analysis from the preliminary engineering concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation using marching procedures allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. Current interest is in developing Green’s function methods allowing laboratory validation of computational procedures and database, as well as, the direct laboratory validation of engineering material radiation transmission properties for evaluation of new engineering concepts.

THEORY AND RESULTS

The relevant transport equations are the linear Boltzmann equations for the flux density $\phi_j(x, \Omega, E)$ for particle type j and are written as

$$\nabla \cdot (\phi_j(x, \Omega, E)) = \sum \int \sigma_{jk}(\Omega, \Omega', E', E) \phi_k(x, \Omega', E') d\Omega' dE' - \sigma_j(E) \phi_j(x, \Omega, E)$$

where $\sigma_j(E)$ and $\sigma_{jk}(\Omega, \Omega', E, E')$ are the shield media macroscopic cross sections. The $\sigma_{jk}(\Omega, \Omega', E, E')$ represent all those processes by which type k particles moving in direction Ω' with energy E' produce a type j particle in direction Ω with energy E (including decay processes). We solve equation (1) by a physics perturbation expansion (atomic, elastic, nuclear) with moment methods and asymptotic expansions for forward components followed by a collisional perturbation theory and multigroup/collocation/Legendre expansion methods for the diffuse components. Recent additions to the Green’s function solutions are energy straggling, fragmentation energy widths and downshifts, and multiple scattering. The recently derived straggling parameter for protons is shown in fig. 1 in comparison to low energy proton straggling experiments where agreement with the new theory is demonstrated to near end of range for the first time.

The new Green’s function for energy loss/straggling has been used to analyze the transmission properties of the Shuttle spacesuit garment under low energy proton irradiation revealing the role of the non-uniformity of the water filled cooling tubes and porosity of the garment fabric. The proton spectrum on the target is shown as the right peak in Fig. 2. Only that fraction of garment not covered by the cooling tubes where transmission only through the fabric gives rise to the next highest energy peak. The greater width of the fabric related peak is due to the porosity of the fabric in addition to straggling effects. The broad spectral feature to the left of the two peaks is due to the geometry of the cooling tubes. The experimental/theoretical differences in this broad central region are believed due to multiple
scattering effects. The rise in the spectrum at lowest energies results from atomic collisional equilibrium where the spectrum approaches an inverse stopping power distribution independent of the source spectrum. These results gave rise to a new spacesuit radiation analysis model and guide the development of future spacesuit designs. The effects of straggling on a monoenergetic beam of Ne are shown in Fig. 3. It is clear that straggling effects are important in analysis of HZE transmission properties in addition to the importance on low energy proton transmission properties.

The energy spread and energy downshifts in nuclear fragmentation events have been added to the first asymptotic expansion term, which is evaluated using collisional perturbation theory. The first three collisional perturbations of the first order asymptotic expansion is shown in Figs. 3 to 5 for oxygen fragments produced by nuclear interactions of a 600-MeV/amu neon beam incident of a thick aluminum absorber. The first asymptotic correction term includes transverse spread of the beam due to multiple scattering and the transverse momentum spread in fragmentation. Although straggling is important in the energy spectrum of the transmitted primary beam as shown in Fig. 3, straggling is of minor importance in the higher order collisional terms shown in Figs. 4 and 5. These transported spectral widths are dominated by the effects of the fragmentation energy widths.

We rewrite equation (1) in operator notation in which the field functions \(\phi(x, \Omega, E) \) are combined in a vector array \(\Phi \) as

\[
\Phi = [\phi(x, \Omega, E)]
\]

with the drift term replaced by a diagonal matrix operator as

\[
D = [\Omega \cdot \nabla]
\]

and the interaction kernel into an operator containing diagonal \([\sigma_j(E)] \) and lower triangular elements related to \(\sigma_{jk}(\Omega, \Omega', E, E') \) given as

\[
I = [\Sigma \{ \sigma_{jk}(\Omega, \Omega', E, E') d\Omega dE' - \sigma_j(E) \}]
\]

The interaction operator \(I \) has three parts associated with atomic, elastic, and reactive processes. Equation (1) is then rewritten with each contribution (atomic, elastic, reactive) shown separately as

\[
[D - I_{at} - I_{el}] \cdot \Phi = I_r \cdot \Phi
\]

where the first two physical perturbation terms (also diagonal operators) are shown on the left-hand side and have been adequately resolved in past research. The reaction cross section is separable into diffuse and forward components (Fig. 6 as example) for which equation (5) may be written as coupled equations

\[
[D - I_{at} - I_{el} + \sigma_r] \cdot \Phi_{for} = \{ \int \sigma_{r,for}(\Omega, \Omega', E, E') d\Omega dE' \} \cdot \Phi_{for} \equiv \Xi_{r,for} \Phi_{for}
\]

and

\[
[D - I_{at} - I_{el} + \sigma_r] \cdot \Phi_{iso} = \{ \int \sigma_{r,iso}(\Omega, \Omega', E, E') d\Omega dE' \} \cdot \Phi_{iso} + \{ \int \sigma_{r,for}(E, E') d\Omega dE' \} \cdot \Phi_{for} \equiv \Xi \cdot \Phi_{iso} + \Xi_{r,for} \Phi_{for}
\]
where $\Phi = \Phi_{iso} + \Phi_{int}$ and the operator Ξ is the integral portion of I. Equation (6) is a Volterra equation and can be solved as a Neumann series, which can be either evaluated directly or prescribed as a marching procedure in either a perturbative sense as the current form of HZETRN, or nonperturbative sense (future version of HZETRN) as described elsewhere. The cross term in equation (7) gives rise to an isotropic source of light ions and neutrons of only modest energies. Spectral contributions to the Neumann series depend on the particle range and probability of surviving nuclear reactions which establish the form of the G matrix as $(G = [D - I_{at} - I_{el} + \sigma f])$, the inverse of the differential operator on the left of equations (6) and (7). The second term of the Neumann series is proportional to the probability of nuclear reaction that is limited by the particle range as discussed above. It is well known that nuclear reactions for the charged particles below a few hundred A MeV are infrequent for which rapid convergence of the colissional perturbation series has been demonstrated.

The remaining problem is solution for the transport of the low-energy neutron and light ion isotropic sources in equation (7) that dominate the solution below about 70 A MeV. In this region light ion transport is dominated by the atomic interaction terms and only a very small fraction have nuclear reactions making only minor contributions to the particle fields.

The neutrons have no charge and are dominated at low energies by elastic and reactive nuclear processes. We further expand equation (7) for the single neutron component as

$$\int [\Omega \cdot \nabla + \sigma_n] \phi_n(\Omega, E) = \int \sigma_{nn}(\Omega, \Omega', E, E') \phi_n(\Omega, E') d\Omega' dE' + [\Xi_{iso} \cdot \Phi + \Xi \cdot \Phi_{int}]$$

where the last term is from coupling to the solution of equation (7). The neutron spectrum is greatly degraded in energy on the first collision and what remains of the low-energy neutron transport is the last issue to be resolved. This is the typical nuclear engineering problem for which a multitude of methods have been developed such as the Sn, multigroup, and collocation methods already applied to versions of HZETRN. It is mainly a question of computational efficiency and we continue to investigate this issue. Monte Carlo methods have been helpful in evaluation of these computational procedures in simple geometry where computational times differ by only 3 orders of magnitude. Results of the forward/backward method (fb) are compared to the Legendre expansion (Pn) method using the HZETRN nuclear database in Fig. 7. The Sn method is compared to MCNPX calculations using the ANISIN neutron database. It is clear that an improved database for HZETRN is required.

FUTURE WORK

Introduction of multiple scattering Green’s function is the next logical step in the sequential development of high-speed computational procedures. We will utilize the multiple scattering solutions of Fermi given by

$$G(z,r,\theta) = [\sqrt{3} w^2 / 2 \pi z^3] \exp[-w^2(\theta^2 / z - 3r \theta / z^2 + 3r^2 / z^2)]$$

where z is the longitudinal distance and r is the lateral distance and θ is the angle to the longitudinal axis. We will be using Schimmerling and coworkers modifications to Fermi’s width formula.